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Abstract. The role of the Floquet parameter in the quantization of a particle in the field of
two parallel string-like solenoids is clarified.

1. Introduction

The problem of anyon statistics [1, 2] and related aspects of two-dimensional angular
momentum has led to very detailed investigations of the quantization of particles in the
magnetic field of a solenoid [3]. This seemingly simple problem is also of considerable
interest for comparison with the behaviour of particles in the vicinity of field vortices [4]—
and the latter are well known to allow some otherwise unusual quantum numbers. Although
the one-solenoid problem seems relatively simple, it led to some false conclusions [1]
concerning the quantization of two-dimensional angular momentum. The latter have been
clarified and corrected in [3] where it is pointed out that a clear distinction between orbital
and canonical angular momentum is absolutely essential to the argument. More recently the
less symmetric problem of a particle in the field of two parallel string-like solenoids has
been considered [5, 6], and again the question of how the angular momentum is quantized
arises. The angular momentum and the related conserved quantity have, however, not
been considered explicitly in these investigations, which therefore leave some crucial points
unclarified.

Almost every investigation of the solenoid problem so far resorts at some point to the
singular gauge transformation which—essentially—removes the electromagnetic field from
the Hamiltonian, thus permitting an easier comparison with the case of the free particle.
The unavoidable branch cut or Dirac string that one obtains in return is evidence of the
fact that the field cannot really be removed. In order to circumvent this mathematical
aspect the authors of [3] introduced a regularized—and hence nonsingular—version of this
gauge transformation which has the advantage of demonstrating explicitly the rotational
noncovariance of the resulting electromagnetic field which then makes it very plausible to
accept a multivaluedness of the corresponding Schrödinger wavefunction.

In the problem of two parallel solenoids the lines of constant electromagnetic vector
potential|A| are elliptic which suggests the use of elliptic cylinder coordinates. The field-
free Hamiltonian then separates into a (periodic) Mathieu equation and a (nonperiodic)
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modified Mathieu equation. The wavefunctions of a periodic problem are well known to
obey the Bloch condition (v(θ) = eiνπ · v(θ + π)) which involves the Floquet parameterν.
We ask: What is the significance ofν in the problem of two solenoids and how is it related
to the conserved angular momentum? In [5]ν is taken to be integral, whereas in [6]ν is
stated to be nonintegral.

In the following we first derive the conserved quantity—the angular momentum which
is equal to the orbital angular momentum plus a constant proportional to the magnetic flux—
and then consider gauge transformations and the diagonalization of angular momentum and
energy operators. We show thatν is an integer which quantizes the angular momentum.

2. Elliptic field geodesics and angular momentum

We consider the arrangement of [5] with the two parallel flux lines of infinitely long solenoids
parallel to thez-axis and through the pointsx = −a and+a. The vector potentialA at a
point (x, y) expressed in terms of polar coordinates(ρ, φ) with respect to these points as
poles is given by

A = 8

2π

[
eφ1

ρ1
+ eφ2

ρ2

]
(1)

where8 is the flux of the flux lines andeφ1, eφ2 are unit vectors in theφ1, φ2 directions.
We take(r, ϕ) as polar coordinates with respect to the origin as a pole. In the following it
is also very convenient to introduce elliptic coordinatesµ andθ of the point (x, y) defined
by

x = a coshµ cosθ y = a sinhµ sinθ

where 06 µ <∞,−π 6 θ < π . The unit vectors along theµ andθ directions are written
eµ, eθ . The Lagrangian of a particle of massm moving in the field of the solenoids is given
by

L = 1

2
mṙ2+ e

c
ṙ ·A(r) (2)

whereṙ = ṙer + rϕ̇eϕ. We set

R± : = (x ± a)2+ y2 = a2(coshµ± cosθ)2

U± : = x(x ± a)+ y2

= a2{sinh2µ sin2 θ + coshµ cosθ(coshµ cosθ ± 1)}. (3)

Then

A = 8

2π

[
a

[
1

R+
− 1

R−

]
er + 1

r

[
U−
R−
+ U+
R+

]
eϕ

]
(4)

and one can check that∇ ·A = 0 (Coulomb gauge). ThusL with this value ofA is not
rotationally invariant. In fact, subjectingL to the rotational variation

δri = −ωεij rj δϕ = ω = fixed

one finds

δL = aωe
c

8

2π

d

dt

[
x − a
R−
− x + a

R+

]
. (5)
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Thus, the Lagrangian changes by a total time derivative and only the action is invariant. This
rotational invariance-violating part, i.e. (5), however, contributes to the conserved quantity.
Returning toL we see that

Pϕ = ∂L
∂ϕ̇
= mr2ϕ̇ + e

c
reϕ ·A(r) = mr2ϕ̇ + e

c

8

2π

[
U+
R+
+ U−
R−

]
(6)

and

(r × p) · ez = pϕ.
Since (with the help of the equation of motion)

δL(r, ṙ) = d

dt

[
∂L
∂ ṙ
· δr

]
= d

dt

[
∂L
∂ϕ̇
δϕ

]
(7)

we have

ω
d

dt
M = 0

with

M = pϕ − a e
c

8

2π

[
x − a
R−
− x + a

R+

]
(8)

as the conserved quantity. Inserting the value ofpϕ we obtain

M = mr2ϕ̇ + 2α (9)

where 2α = e8
cπ

. We observe that this expression is independent ofa and hence of the
ellipticity. It is important to distinguish here where we have a velocity-dependent potential
between thekinematical or orbital angular momentummr2ϕ̇ and the canonical angular
momentumr × p. In quantum mechanics it isp which becomes−ih̄∇, notmṙ. Hence,
the canonical angular momentum is notmr2ϕ̇. Thus, despite the rotational noninvariance
of the originalL but invariance ofL augmented by the total time derivative to give the
invariant expression, we have a conserved angular momentumM, and this is irrespective
of whether the flux lines are present or not.

The lines of constantA can be seen to be elliptic geodesics in the(x, y)-plane with the
flux lines passing through the foci. This clearly suggests the use of elliptic coordinatesµ

andθ . It is convenient to define the following quantities:

h(θ, µ) := cosh 2µ− cos 2θ

f (θ, µ) := 1

h
sinh 2µ

g(θ, µ) := 1

h
sin 2θ.

(10)

Using transformation formulae of unit vectors given in [5] we have

L = r × p = −ih̄ez3 (11)

where

3 = f ∂

∂θ
+ g ∂

∂µ
. (12)
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It is straightforward to establish the following relations in which subscripts indicate
differentiation:

fµ + gθ = 0 fθ − gµ = 0

fθθ + fµµ = 0 gθθ + gµµ = 0[
1

h
,3

]
= 4

fg

h
= −2

h
fθ .

One can verify that

[3,3] = 0.

The free Hamiltonian is

H0 = h̄2

ma2

1

h

[
∂2

∂µ2
+ ∂2

∂θ2

]
and one can check that
ma2

h̄2 [H0,3] =
{

2

h
fθ +

[
1

h
,3

]}
∂2

∂θ2
+
{

2

h
gµ +

[
1

h
,3

]}
∂2

∂µ2

+2

h
(gθ + fµ) ∂

∂θ

∂

∂µ
+ 1

h
(fθθ + fµµ) ∂

∂θ
+ 1

h
(gµµ + gθθ ) ∂

∂θ

= 0.

The Hamiltonianwith the vector potential is the usual expression

H = h̄2

2m

[
∇− ie

h̄c
A

]2

. (13)

In proceeding further the question of gauge transformations arises since one may wish to
choose a particularly convenient form ofA, such asA parallel toeθ , the choice discussed
in [5].

3. Gauge transformations

The fieldA given above in (1) and (4) can be expressed in terms of elliptic coordinates.
Then

A =
√

28(−geµ + f eθ )
πah1/2

. (14)

The regular gauge transformation of [5] removes the component alongeµ giving the new
field along the tangent to the ellipse, i.e.

A′ =
√

28

πa
.

1

h1/2
eθ . (15)

With a singular gauge transformation one can totally removeA orA′ fromH in which case
the Schr̈odinger operator becomes easily separable as in the derivation of Mathieu equations
(of course, the wavefunctions have to be transformed accordingly in order to maintain the
gauge covariance of the Schrödinger equation). In order to find these gauge transformations
we proceed in analogy to one-flux line considerations [3]. We consider

φ1+ φ2 = tan−1

[
y

x − a
]
+ tan−1

[
y

x + a
]

= tan−1

[
sinhµ sinθ

coshµ cosθ − 1

]
+ tan−1

[
sinhµ sinθ

coshµ cosθ + 1

]
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from which we deduce

U
(1)
S : = ei(φ1+φ2) = sinh(µ+ iθ)

sinh(µ− iθ)

= 2
sinh2(µ+ iθ)

h
. (16)

We set

AS = A−∇� � := 8

2π
(φ1+ φ2)

and verify thatAS = 0. In fact,

∇� = 8

2π

√
2

h

(
eµ

∂

∂µ
, eθ

∂

∂θ

)
ln

[
sinh(µ+ iθ)

sinh(µ− iθ)

]
= A

andA is seen to be a pure gauge potential (apart from the cut).
The singular gauge transformationU(1)

S from A to 0 does not allow a separation ofµ
andθ as we see from the above. However, the singular gauge transformation fromA′ to 0
is easy, i.e.

U = e+i e
h̄c
� (17)

with

� = 8

π
θ (18)

since then

∇� =∇θ� ≡
√

2eθ
ah1/2

∂

∂θ
� (19)

cancels exactlyA′. The singular behaviour results from the multivaluedness ofθ =
tan−1

[
y coshµ
x sinhµ

]
andAS is again (almost) pure gauge. Next we examine the transformation of

L andH under these gauge transformations. ConsideringL = ez · (r×p) with p = −ih̄∇
we have

U+LU = L+ e
c

8

π
f. (20)

In the limit µ → ∞, a → 0 this expression can be seen to reduce to the corresponding
result of the one-solenoid case considered in [3].

We now examine the transformation ofL under the singular gauge transformationU(1)
S .

A lengthy calculation yields

U
+(1)
S LU

(1)
S = L− 2h̄(f 2− g2) = −h̄

{
U+
R+
+ U−
R−

}
. (21)

Inserting constants we set

US := e[i(φ1+φ2)α] with α = e

h̄c

8

2π
and so

U+S LUS = L−
e

c

8

2π

{
U+
R+
+ U−
R−

}
. (22)

Thus, in view of the violation of spherical symmetry this expression again does not agree
with the conserved quantity.
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Next we consider the HamiltonianH . Since the Lagrangian is not rotationally symmetric
the HamiltonianH is also not rotationally symmetric. This may be verified explicitly by
computing, e.g. the part [3,A2] which will be found to be nonzero. However, with the
singular gauge transformation we can—effectively—remove the vector potential fromH

and obtainH0 provided the wavefunctions are transformed accordingly. The Schrödinger
eigenvalue problemHψ = Eψ is then that of the two-dimensional Laplace operator
separated in elliptic coordinates. This separation leads to two equations—a (periodic)
Mathieu equation and a (nonperiodic) modified Mathieu equation, as is well known. Thus,
with U

H → U+HU = H̃ ψ → U+ψ = ψ̃
andH̃ ψ̃ = Eψ̃ with ψ̃ = u(θ)v(µ) andq = a2mE

2h̄2 the Schr̈odinger equation separates into

d2v

dµ2
+ (−λ+ 2q cosh 2µ)v = 0 (23)

d2u

dθ2
+ (λ− 2q cos 2θ)u = 0 (24)

where λ is the separation constant. In the following we consider the eigenvalues ofL

andH̃ .

4. Eigenvalues and eigenfunctions

We have seen that the angular momentum operatorL commutes with the free part of the
Hamiltonian, and we have also seen that the fieldA′ can—effectively—be gauged away
to give the HamiltonianH̃ which is the free part of the original Hamiltonian expressed in
elliptic coordinates. Thus

[L, H̃ ] = 0.

HenceL andH̃ share the same system of eigenfunctionsψ̃ = u(θ)v(µ). The angular part
u(θ) is a solution of the periodic Mathieu equation obtained above. The solutions of this
equation have been studied in great detail in the literature [7].

The question arises: What is the relation betweenL andM, whereM is the classically
conserved quantity given by equation (8)? LikeL this quantity, i.e.

M = L− ae
c

8

2π

[
x − a
R−
− x + a

R+

]
does not commute withH and hence is not a conserved quantity in quantum mechanics.
In comparingL andM we have to use the same gauge for both.M, by construction, is
given in the original gauge, i.e. withA given by equation (4) or equation (14).̃H is the
Hamiltonian withA = 0 and [L, H̃ ] = 0. To return to the original gauge we have to use
the gauge transformationU(1)

S backwards, i.e.

U
(1)
S H̃U

(1)+
S = H

and (cf (21))

L′ := U(1)
S LU

(1)+
S = L+ 2h̄(f 2− g2).

Furthermore

[L′, H ] = [U(1)
S LU

(1)+
S , U

(1)
S H̃U

(1)+
S ]

= U(1)
S

[
L, H̃

]
U
(1)+
S

= 0.
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Thus,L′ is a conserved quantity in the original gauge althoughH is not rotationally invariant
in that gauge. AlsoL′ 6= M.

We now return to the consideration of the solutions of Mathieu’s equation referred to
above. The solutions of the periodic Mathieu equation are characterized by the real Floquet
parameterν which enters in view of the Bloch function property [7]

u(θ + π) = eiνπu(θ)

of the solutions of the Mathieu equation. Our original question was: What is the significance
of ν, if any? Is it integral or nonintegral? In [6] it is claimed thatν is nonintegral—whereas
[5] assumes without explanation thatν is integral. In order to clarify this point we look at
the angular momentum operatorL (which was not considered in [5, 6]) and at the solutions
of the Mathieu equation in more detail.

The periodic solutions of the Mathieu equation in the neighbourhood ofq = 0 (i.e.
close to vanishing separation of the solenoids) are [7, 8]:

(i) for ν nonintegral

u→ meν(θ, q) = eiνθ + 0(q)

(with suitable normalization) and

λ = ν2+ 0(q) (25)

and
(ii) for ν integral:

ν → 2n, 2n+ 1, 2n+ 1, 2n+ 2 with n = 0, 1, 2, . . .

u→


ce2n(θ, q) = cos 2nθ + 0(q)

ce2n+1(θ, q) = cos(2n+ 1)θ + 0(q)

se2n+1(θ, q) = sin(2n+ 1)θ + 0(q)

se2n+2(θ, q) = sin(2n+ 2)θ + 0(q)

(with suitable normalization) and respectively

λ→


a2n(q) = (2n)2+ 0(q2) = a2n(−q)
a2n+1(q) = (2n+ 1)2+ 0(q) = b2n+1(−q)
b2n+1(q) = (2n+ 1)2+ 0(q) = a2n+1(−q)
b2n+2(q) = (2n+ 2)2+ 0(q2) = b2n+2(−q).

These solutions possess the following properties respectively

u(θ + π) = u(θ)
u(θ + π) = −u(θ)
u(θ + π) = −u(θ)
u(θ + π) = u(θ)

and hence satisfy the relationu(θ + 2π) = u(θ). We see that in the limitq → 0 there
is a confluence of the eigenvalues of (in each case) two distinct solutions, and the linear
combination of these solutions which has modulus one is eiNθ , with N integral, and then
agrees with the circular case and

lim
ν→N
q→0

meν(θ, q) = eiNθ .



7298 J-z Zhang et al

If ν was allowed to be nonintegral in general (in our elliptic case) we would have a
multivalued wavefunction in the limiting case ofq → 0, in contradiction with elementary
experience and the consequent requirement of single-valuedness upon replacement ofθ by
θ +2π [3]. Thus, in order to retain this limiting propertyν must be integral. In fact, this is
also seen to be clear by looking atL in the limit a→ 0, µ→∞ with 1

2aeµ = r = finite. In
this casef → 1, g→ 0 andL→−ih̄ ∂

∂θ
. The singular gauge transformation does not enter

in this part of the discussion at all—only the fact thatL commutes with the two-dimensional
Laplacian separated in elliptic coordinates. As emphasized in [3] the eigenvalues of the
angular momentum remain the same integers irrespective of whether a solenoid is present
or not.

We now consider the eigenfunctions ofH . Again we demand that in the limit
a → 0, µ → ∞ with 1

2aeµ = r finite the findings of the one-solenoid case must be
reproduced. The case of the latter has been investigated thoroughly in [3]. By allowing8

to have somer dependence and� of equation (18) to be suitably regularized, the singular
gauge transformation becomes nonsingular and, in fact, the gauge transformed field of
A′ (in fact, the r-component) is no longer zero but a rotationally noncovariant quantity
proportional to the angleθ and d8

dr . Thus, after one rotation the field assumes a new value.
If the field changes like this, there is no reason why the wavefunctionψ of the corresponding
Schr̈odinger equationHψ = Eψ should not change and be single-valued. It is perfectly
acceptable in this case that the wavefunctionψ is multivalued. Thus, there is no reason
why the wavefunction in the singular gauge and forq 6= 0 should have a very different
behaviour. The multivaluedness of

ψ = U+u(θ)v(µ) (26)

as a result of the factorU+ is therefore perfectly acceptable.

5. Conclusions

We have demonstrated that the conserved angular momentum is quantized in integral units
of h̄, and that this is equal to the kinematical orbital momentum shifted by the flux. We
have also demonstrated that one cannota priori assume that the Schrödinger wavefunction,
even after regularization of the singular gauge, is single-valued upon rotation by 2π . It is
necessary to consider also the angular momentum operator whose eigenfunctions are not
affected by the gauge transformation. This consideration then leads to integral values of
the Floquet parameter which (multiplied by ¯h) give the eigenvalues of angular momentum.
As described above, the use of the singular gauge transformation has the advantage of re-
moving the electromagnetic field from the Hamiltonian of the Schrödinger equation, thus
permitting the latter’s separation into periodic and modified Mathieu equations. The singular
gauge transformation implies the multivaluedness of the gauge function. A regularization
of the latter implies a new gauge field which is no longer zero and hence a modification
of the wavefunctionψ which therefore need no longer be single-valued. Thus, the con-
siderations here—motivated by separability into Mathieu equations—rely on the use of a
singular gauge transformation. This is the opposite approach to that of [9] which proves the
single-valuedness of wavefunction as a consequence of several nonsingular gauges which
are matched in regions of overlap. Other aspects of the two-solenoid problem, such as
the calculation of the Green’s function, have been investigated in [10] using a universal
covering space technique based on the idea of multiply connected spaces associated with
multivalued wavefunctions.
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