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Abstract. The role of the Floquet parameter in the quantization of a particle in the field of
two parallel string-like solenoids is clarified.

1. Introduction

The problem of anyon statistics [1, 2] and related aspects of two-dimensional angular
momentum has led to very detailed investigations of the quantization of particles in the
magnetic field of a solenoid [3]. This seemingly simple problem is also of considerable
interest for comparison with the behaviour of particles in the vicinity of field vortices [4]—
and the latter are well known to allow some otherwise unusual quantum numbers. Although
the one-solenoid problem seems relatively simple, it led to some false conclusions [1]
concerning the quantization of two-dimensional angular momentum. The latter have been
clarified and corrected in [3] where it is pointed out that a clear distinction between orbital
and canonical angular momentum is absolutely essential to the argument. More recently the
less symmetric problem of a particle in the field of two parallel string-like solenoids has
been considered [5, 6], and again the question of how the angular momentum is quantized
arises. The angular momentum and the related conserved quantity have, however, not
been considered explicitly in these investigations, which therefore leave some crucial points
unclarified.

Almost every investigation of the solenoid problem so far resorts at some point to the
singular gauge transformation which—essentially—removes the electromagnetic field from
the Hamiltonian, thus permitting an easier comparison with the case of the free particle.
The unavoidable branch cut or Dirac string that one obtains in return is evidence of the
fact that the field cannot really be removed. In order to circumvent this mathematical
aspect the authors of [3] introduced a regularized—and hence nonsingular—version of this
gauge transformation which has the advantage of demonstrating explicitly the rotational
noncovariance of the resulting electromagnetic field which then makes it very plausible to
accept a multivaluedness of the corresponding &tihger wavefunction.

In the problem of two parallel solenoids the lines of constant electromagnetic vector
potential| A| are elliptic which suggests the use of elliptic cylinder coordinates. The field-
free Hamiltonian then separates into a (periodic) Mathieu equation and a (nonperiodic)
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modified Mathieu equation. The wavefunctions of a periodic problem are well known to
obey the Bloch conditionu(6) = €' - v( + 7)) which involves the Floquet parameter
We ask: What is the significance ofin the problem of two solenoids and how is it related
to the conserved angular momentum? In {5k taken to be integral, whereas in [6]is
stated to be nonintegral.

In the following we first derive the conserved quantity—the angular momentum which
is equal to the orbital angular momentum plus a constant proportional to the magnetic flux—
and then consider gauge transformations and the diagonalization of angular momentum and
energy operators. We show thais an integer which quantizes the angular momentum.

2. Elliptic field geodesics and angular momentum

We consider the arrangement of [5] with the two parallel flux lines of infinitely long solenoids
parallel to thez-axis and through the points = —a and +a. The vector potentiald at a
point (x, y) expressed in terms of polar coordinatgs ¢) with respect to these points as
poles is given by

[ €y €y
A=_—|—+ —2] (1)
21 |:,01 02
where @ is the flux of the flux lines aney,, e4, are unit vectors in theé;i, ¢, directions.

We take(r, ¢) as polar coordinates with respect to the origin as a pole. In the following it
is also very convenient to introduce elliptic coordinateandé of the point &, y) defined

by
x = a coshu cosp y = a sinhu sing

where 0< u < oo, —r < 6 < 7. The unit vectors along the andé directions are written
e,, ey. The Lagrangian of a particle of magsmoving in the field of the solenoids is given

by
1 5, e,
L=_-mr‘+ -7 A(r) 2)
2 c
wherer = re, + rge,. We set

Ry : = (x £ a)® + y? = a®(coshu £ cosh)?
Uy =x(x +a)+y?

= a?{sint? w sir’ 6 + coshu cosd (coshu cost =+ 1)}. )
Then
® 11 1[U. U,
=g lle-wle s m v @

and one can check th&f - A = 0 (Coulomb gauge). Thug with this value of A is not
rotationally invariant. In fact, subjecting to the rotational variation

8ri = —weijr,j 3¢ = w = fixed
one finds
e® d[x—a x+4a
8L =aw——— - : >
achndt[R_ R+i| ©
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Thus, the Lagrangian changes by a total time derivative and only the action is invariant. This
rotational invariance-violating part, i.e. (5), however, contributes to the conserved quantity.
Returning toL we see that

oL . e . ed U U_
P(pza_(p:mrz(p—i—zrew-A(r):mrzgo—l—EZ|:R—1+R—i| (6)

(rxp)-e;, = p,.

Since (with the help of the equation of motion)

drac d[aoL
8 ) — ) 7
corir =5 55 or] = 5 [ 5o ] Y
we have
d J—
Ya T
with
e ® [x—a x+a
M = —a-— — 3
Pe =4 on [ R_ R, } ®
as the conserved quantity. Inserting the valugfwe obtain
M = mr?p + 2ua 9)

where & = %. We observe that this expression is independent @ind hence of the

ellipticity. It is important to distinguish here where we have a velocity-dependent potential
between thekinematical or orbital angular momentunmr2¢ and the canonical angular
momentumr x p. In quantum mechanics it ip which becomes-izV, notms. Hence,
the canonical angular momentum is net?p. Thus, despite the rotational noninvariance
of the original £ but invariance ofC augmented by the total time derivative to give the
invariant expression, we have a conserved angular momemurand this is irrespective
of whether the flux lines are present or not.

The lines of constanfl can be seen to be elliptic geodesics in they)-plane with the
flux lines passing through the foci. This clearly suggests the use of elliptic coordjnates
andé. It is convenient to define the following quantities:

h(@, u) :=coshL — cos P
fO, ) = } sinh 2u (10)
g0, n) = %sin X.

Using transformation formulae of unit vectors given in [5] we have
L=7rxp=—iheA (11)

where

0
= f + 8@ (12)
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It is straightforward to establish the following relations in which subscripts indicate
differentiation:
fut8 =0 fo—8:.=0
Joo + fuu =0 800 + &uu =0
1 fe 2
[5’ A} =4 TRl
One can verify that
[A,A]=0.
The free Hamiltonian is
21 92 9
o= it |7, ag7)
and one can check that

maz[HA]_ 2f—|—1A 82+2 +1A 92
Ez 0, - h [Z] hv 892 th ]’l’ 8“2

2 d0 0 1 0 1 0
+Z(g0+f/1) +Z(f99+fm¢)£+E(g;tu‘i‘g@@)ﬁ

96
=0.
The Hamiltonianwith the vector potential is the usual expression
R ie 7
H=—|V-=—A]|. 13
2m |: hc ] (13)

In proceeding further the question of gauge transformations arises since one may wish to
choose a particularly convenient form df, such asA parallel toey, the choice discussed
in [5].

3. Gauge transformations

The field A given above in (1) and (4) can be expressed in terms of elliptic coordinates.
Then

V20(—ge, + fep)
wahl/?

The regular gauge transformation of [5] removes the component &praiving the new

field along the tangent to the ellipse, i.e.

A/ = @.LEQ.
ma h1?
With a singular gauge transformation one can totally remdvaer A’ from H in which case
the Schodinger operator becomes easily separable as in the derivation of Mathieu equations
(of course, the wavefunctions have to be transformed accordingly in order to maintain the
gauge covariance of the Séldinger equation). In order to find these gauge transformations
we proceed in analogy to one-flux line considerations [3]. We consider

d1+ P2 =tan?! [L} +tan?t [L]
X —a x+a
_ tart sinhu sind - sinhu sing
B coshu cosd — 1 coshu cosd + 1

A=

(14)

(15)
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from which we deduce
p® . = derren - SN T16)
sinh(u — i0)
ink? i0
_ pSINP( +16). (16)
h
We set

O
Ag=A-VQ Q= 2—(¢>1+¢2)
JT
and verify thatAg = 0. In fact,
o [2 9 9 sinh(u + i6)
VQ=—,/-le,—,es— |IN| — | =A
27V h <e’ A 6980> n|:SInf’(pL—I9):|

and A is seen to be a pure gauge potential (apart from the cut).

The singular gauge transformati(bfk(l) from A to 0 does not allow a separation of
andé as we see from the above. However, the singular gauge transformation4from0
is easy, i.e.

U =e"i? (17)
with
()
Q= ;9 (18)
since then
«/269 d
VQ=VeQ=—r o0 (19)

cancels exactlyA’. The singular behaviour results from the multivaluedness of

tarr?! [%] and A is again (almost) pure gauge. Next we examine the transformation of

L and H under these gauge transformations. Considefing e, - (r x p) with p = —iAV
we have

®
UtLu =L+ 27, (20)
CTT

In the limit © — oo,a — 0 this expression can be seen to reduce to the corresponding
result of the one-solenoid case considered in [3].

We now examine the transformation bfunder the singular gauge transformatldﬁ).
A lengthy calculation yields

- _|U U_
U§PLUY = L - 2h(f% - g% = —h{—++—}- (21)
R, R_
Inserting constants we set
US — éi (p1+¢2)] W|th o = _ig
he 2w
and so
e q) U+ U—
UfLUs=L—-— 15—+ —1. 22
s =TS c2m {R+ * R_} 22

Thus, in view of the violation of spherical symmetry this expression again does not agree
with the conserved quantity.
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Next we consider the Hamiltoniaki. Since the Lagrangian is not rotationally symmetric
the HamiltonianH is also not rotationally symmetric. This may be verified explicitly by
computing, e.g. the parta[, A2] which will be found to be nonzero. However, with the
singular gauge transformation we can—effectively—remove the vector potential ffom
and obtainH, provided the wavefunctions are transformed accordingly. Thet8aiger
eigenvalue problemHy» = Ev is then that of the two-dimensional Laplace operator
separated in elliptic coordinates. This separation leads to two equations—a (periodic)
Mathieu equation and a (nonperiodic) modified Mathieu equation, as is well known. Thus,
with U

H—>U'HU=H v > Uy =v¢
and Hy = Ey with ¥ = u(®)v(n) andg = “;Lj the Schodinger equation separates into

d2

d_;; ¥ (=4 +2g cosh20)v =0 23)
d?u

T (A—2gcosP)u=0 (24)

where A is the separation constant. In the following we consider the eigenvalués of
andH.

4. Eigenvalues and eigenfunctions

We have seen that the angular momentum operatoommutes with the free part of the
Hamiltonian, and we have also seen that the fidldcan—effectively—be gauged away
to give the Hamiltoniand which is the free part of the original Hamiltonian expressed in
elliptic coordinates. Thus
[L,H] =0.

HenceL and H share the same system of eigenfunctigns= u(6)v(x). The angular part
u(0) is a solution of the periodic Mathieu equation obtained above. The solutions of this
equation have been studied in great detail in the literature [7].

The question arises: What is the relation betwéesnd M, whereM is the classically
conserved quantity given by equation (8)? Likehis quantity, i.e.
ae ® [x—a x+4a

[ R Ry ]

does not commute witti{ and hence is not a conserved quantity in quantum mechanics.
In comparingL and M we have to use the same gauge for bo, by construction, is
given in the original gauge, i.e. witl given by equation (4) or equation (14H is the
Hamiltonian with A = 0 and [, H] = 0. To return to the original gauge we have to use
the gauge transformatioti{" backwards, i.e.

UPAUPT = H
and (cf (21))
L' :=UPLUPT = L+ 2h(f% - g°).
Furthermore
L, H] =[UPLuPt uP AUPT]
=ul[L. A]ud*
=0.
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Thus, L’ is a conserved quantity in the original gauge altho#gts not rotationally invariant
in that gauge. Alsd.” # M.

We now return to the consideration of the solutions of Mathieu’s equation referred to
above. The solutions of the periodic Mathieu equation are characterized by the real Floquet
parametenw which enters in view of the Bloch function property [7]

u®+ ) =€’ ud)

of the solutions of the Mathieu equation. Our original question was: What is the significance
of v, if any? Is it integral or nonintegral? In [6] it is claimed thats nonintegral—whereas
[5] assumes without explanation thatis integral. In order to clarify this point we look at
the angular momentum operatbr(which was not considered in [5, 6]) and at the solutions
of the Mathieu equation in more detalil.

The periodic solutions of the Mathieu equation in the neighbourhood ef 0 (i.e.
close to vanishing separation of the solenoids) are [7, 8]:

(i) for v nonintegral

u— me,(9,q) =€ +0(q)
(with suitable normalization) and
A =124+0(q) (25)
and
(ii) for v integral:
v=>2n,2n+1,2n+1,2n+2 withn=0,1,2,...
cez, (0, q) = cos b + 0(q)
cex1(0, q) = cog2n + 1)0 4 0(q)
sez11(0, q) = sin(2n + 1)6 + 0(q)
sez2(0, q) = sin(2n + 2)0 + 0(q)
(with suitable normalization) and respectively
az(q) = (2n)* + 0(g%) = az.(—q)
az41(9) = (20 + 1? +0(q) = baur1(—q)
baii1(9) = (20 + 1)? +0(q) = az11(—q)
banr2(q) = 21+ 27 +0(¢°) = bar2(—q).
These solutions possess the following properties respectively
u®+m) =u(®)
u@®+m) = —u®)
u@+m)=—ud)
u@®—+m)=u@®)

and hence satisfy the relation® + 27) = u(9). We see that in the limiy — 0 there

is a confluence of the eigenvalues of (in each case) two distinct solutions, and the linear
combination of these solutions which has modulus oneN$, avith N integral, and then
agrees with the circular case and

Iirrl1V me, (0, q) = e’

g0
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If v was allowed to be nonintegral in general (in our elliptic case) we would have a
multivalued wavefunction in the limiting case gf— 0, in contradiction with elementary
experience and the consequent requirement of single-valuedness upon replacefmient of
0 + 27 [3]. Thus, in order to retain this limiting propertymust be integral. In fact, this is
also seen to be clear by looking atn the limita — 0, u — oo with %ae“ =r = finite. In
this casef — 1,g — 0 andL — —iﬁ%. The singular gauge transformation does not enter
in this part of the discussion at all—only the fact tiatommutes with the two-dimensional
Laplacian separated in elliptic coordinates. As emphasized in [3] the eigenvalues of the
angular momentum remain the same integers irrespective of whether a solenoid is present
or not.

We now consider the eigenfunctions éf. Again we demand that in the limit
a — 0,u — oo with %ae" = r finite the findings of the one-solenoid case must be
reproduced. The case of the latter has been investigated thoroughly in [3]. By alldwing
to have some dependence an@ of equation (18) to be suitably regularized, the singular
gauge transformation becomes nonsingular and, in fact, the gauge transformed field of
A’ (in fact, ther-component) is no longer zero but a rotationally noncovariant quantity
proportional to the anglé and ‘é—‘f. Thus, after one rotation the field assumes a new value.
If the field changes like this, there is no reason why the wavefungtionthe corresponding
Schibdinger equatiorHy = Ev should not change and be single-valued. It is perfectly
acceptable in this case that the wavefunctipris multivalued. Thus, there is no reason
why the wavefunction in the singular gauge and §oe£ O should have a very different
behaviour. The multivaluedness of

¥ =UTu@)v(w) (26)
as a result of the factdv* is therefore perfectly acceptable.

5. Conclusions

We have demonstrated that the conserved angular momentum is quantized in integral units
of 71, and that this is equal to the kinematical orbital momentum shifted by the flux. We
have also demonstrated that one carmptiori assume that the Satinger wavefunction,

even after regularization of the singular gauge, is single-valued upon rotation .bit &
necessary to consider also the angular momentum operator whose eigenfunctions are not
affected by the gauge transformation. This consideration then leads to integral values of
the Floquet parameter which (multiplied by give the eigenvalues of angular momentum.

As described above, the use of the singular gauge transformation has the advantage of re-
moving the electromagnetic field from the Hamiltonian of the 8dmger equation, thus
permitting the latter’'s separation into periodic and modified Mathieu equations. The singular
gauge transformation implies the multivaluedness of the gauge function. A regularization
of the latter implies a new gauge field which is no longer zero and hence a modification
of the wavefunctionyr which therefore need no longer be single-valued. Thus, the con-
siderations here—motivated by separability into Mathieu equations—rely on the use of a
singular gauge transformation. This is the opposite approach to that of [9] which proves the
single-valuedness of wavefunction as a consequence of several nonsingular gauges which
are matched in regions of overlap. Other aspects of the two-solenoid problem, such as
the calculation of the Green’s function, have been investigated in [10] using a universal
covering space technique based on the idea of multiply connected spaces associated with
multivalued wavefunctions.
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